Научная электронная библиотека. Поток энергии и круговорот веществ в биосфере Основной поток энергии поступающей в биосферу представлен

Поток энергии в биосфере. Энтропийность биосферных процессов. Закономерности эволюции биосферы: принцип Реди; закон глобального замыкания биогеохимического круговорота; закон увеличения доли биологического компонента в замыкании биогеохимического круговорота веществ

Биосфера представляет оболочку Земли, включающую в себя как область распространения живого вещества, так и само это вещество.

Вернадский показал, что ведущим фактором, преобразующим лик Земли, является жизнь. В современном понимании биосфера Земли представляет собой открытую систему со своими «входом» и «выходом».

Границы биосферы

  • · Верхняя граница в атмосфере: 15--20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.
  • · Нижняя граница в литосфере: 3,5--7,5 км. Она определяется температурой перехода воды в пар и температурой денатурациибелков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.
  • · Граница между атмосферой и литосферой в гидросфере: 10--11 км. Определяется дном Мирового Океана, включая донные отложения.

Организация любой системы зависит от числа ее компонентов и их иерархии. Каждая система имеет несколько уровней организации. Биосфера является наиболее сложной и высокоорганизованной системой.

Современное состояние любой природной системы рассматривается как определенная стадия развития в процессе ее эволюционирования. В современном понимании биосфера Земли - глобальная открытая саморегулирующаяся система, работающая на солнечной энергии. Продукты жизнедеятельности в конечном итоге имеют выход в геологию, т. е. на время выводятся из биосферного круговорота. Саморегулирование биосферы Земли обеспечивается живыми организмами. Биосферу можно рассматривать как кибернетическую систему, которая только тогда обладает устойчивостью для блокирования внешних и внутренних возмущений, когда она имеет достаточное внутреннее разнообразие.

Вещественное и энергетическое взаимодействие всех составляющих биосферу частей между собой и окружающей средой составляет основу экологии.

Для оптимального природопользования оценивают экологическое качество среды (в условных единицах). Точкой отсчета для оценки изменений служит некое фоновое состояние природной среды, которое не подвержено локальным антропогенным воздействиям. С экологических позиций антропогенное воздействие (тепловое, акустическое, световое, химическое, радиационное) создает помехи, которое повышает фоновое состояние (стандарт). Эти антропогенные помехи в отличие от естественых ведут не к отбору, а к угнетению и гибели организмов.

В основу стратегии развития биосферы положены следующие принципы:

  • 1. Технический прогресс не только желателен, но и жизнено необходим.
  • 2. Народонаселение и ресурсы не могут расти беспредельно.
  • 3. Оптимальная емкость среды неизвестна.
  • 4. Создания социально-экономического механизма гомеостаза в системе «человек-природа».
  • 5. Соблюдение законов оптимальности.

Поток энергии в биосфере складывается из энергии Солнца и внутренней энергии Земли. Однако энергетический обмен охватывает все составные части биосферы, включая и живое вещество.

Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Проходящие в биосфере процессы постоянно меняются, в зависимости от окружающих факторов.

Эволюция биосферы - сложный, многогранный процесс, участниками которого являются не только живые организмы, но и многочисленные силы природы как земного, так и космического происхождения. Потому познание закономерностей эволюции - непростой вопрос, волновавший умы многих естествоиспытателей с глубокой древности. Несомненно, огромный вклад в анализ эволюции биосферы, до сих пор не оценённый в должной мере, сделан В.И. Вернадским. В рамках учения о биосфере он не только рассмотрел основополагающую роль живого вещества в функционировании биосферы, но и глубоко проанализировал направленность различных процессов в ходе её развития. Не случайно это дало основание Д. Гринвальду (Grinevald, 1996) назвать Вернадского «отцом глобальной экологии".

Деятельность человечества давно приобрела глобальные аспекты. Переход биосферы в ноосферу и обусловлен тем, что антропогенный фактор становится всё более определяющим биосферные процессы и, в конечном итоге, эволюцию биосферы. Возросшая сеть научных наблюдений фиксирует разнообразные проявления глобальных изменений природной среды и очень часто с негативных позиций. Действительно, фиксируемые этой сетью результаты дают повод говорить об имеющих место необратимых изменениях биосферы, исчезновении видов и даже возможной гибели человеческой цивилизации.

Однако насколько достоверны выводы на основании этих ничтожных по длительности в сравнении с историей Земли и биосферы наблюдений? В чем причины тех следствий, которые мы наблюдаем в природе? Насколько реальны апокалипсические предупреждения работ Римского клуба? Погубит ли человечество себя на Земле или его ждет миссия заселения Вселенной? Реализуется ли идея ноосферы или это очередной миф, и человек исчезнет как его многочисленные предшественники в цепочке эволюции?

История биосферы - непрерывный процесс необратимых изменений атмосферы, гидросферы, литосферы, происходящих с активнейшим участием живого вещества. История биосферы - это чреда глобальных катастроф, приводящих к перестройке климата, рельефа, к глобальным вымираниям живых организмов. Но каждый раз после таких катастроф развитие продолжалось, жизнь восстанавливалась, и более того, активность живого вещества (в т.ч. биоразнообразие) как правило после этого превосходило свой прежний уровень.

Выдающиеся открытия ХХ века в биологии, палеонтологии, генетике, экологии дают новый импульс к анализу закономерностей процессов развития, эволюции биосферы, на основании которых следует строить научно обоснованные прогнозы дальнейшей судьбы биосферы и человеческой цивилизации. Знание экологических процессов и их изменений во времени даёт возможность понять истинные причины современных демографических процессов, оценить продукционный и ассимиляционный потенциалы биосферы, помочь человечеству преодолеть потребительское отношение к природным ресурсам и найти новое понимание целей развития цивилизации.

Эволюция живого началась с возникновения форм преджизни, а затем и праорганизмов. И с этого геологического «момента» начал действовать принцип Реди: живое происходит только от живого, между живым и неживым веществом существует непроходимая граница, хотя и имеется постоянное взаимодействие. Обобщение, сделанное итальянским естествоиспытателем и врачом Франциско Реди (1626-1698), было заново сформулировано В.И. Вернадским в 1924 году.

Закон глобального замыкания биогеохимического круговорота - биосфера не может существовать без замыкания биогеохимических циклов (круговоротов элементов) веществ.

Беспрерывная циркуляция в биосфере химических элементов, переход их из внешней среды в организмы и обратно. Биогеохимические круговороты: круговорот воды, газообразных веществ, химических элементов.

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими циклами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями. Закон увеличения доли биологического компонента в замыкании биогеохимического круговорота веществ. Колчинский выделяет следующие тенденции в эволюции биосферы: постепенное увеличение общей ее биомассы и продуктивности; прогрессивное накопление аккумулированной солнечной энергии в поверхностных оболочках Земли; увеличение информационной емкости биосферы, проявляющейся в нарастающей диверсификации (росте разнообразия) органических форм, увеличении числа геохимических барьеров и возрастании дифференцированности физико-географической структуры биосферы; усиление некоторых биогеохимических функций живого вещества и появление новых функций; усиление преобразующего воздействия жизни на атмосферу, гидросферу и литосферу и увеличение роли живого вещества и продуктов его жизнедеятельности в геологических, геохимических и физико-географических процессах; расширение сферы действия биотического круговорота и усложнение его структуры.

Поддержание жизнедеятельности организмов и круговорот веществ в экосистемах возможны только за счет постоянного притока энергии. Более 99% энергии, поступающей на поверхность Земли, составляет излучение Солнца. Эта энергия в огромном количестве растрачивается на физические и химические процессы в атмосфере, гидросфере и литосфере: перемешивание воздушных потоков и водных масс, испарение, перераспределение веществ, растворение минералов, поглощение и выделение газов.[ ...]

Только 1/2000000 часть солнечной энергии достигает поверхности Земли, при этом 1- 2% ее ассимилируется растениями. На Земле существует единственный процесс, при котором энергия солнечного излучения не только тратится и перераспределяется, но и связывается, запасается на очень длительное время. Этот процесс - создание органического вещества в ходе фотосинтеза. Сжигая в топках каменный уголь, мы освобождаем и используем солнечную энергию, запасенную растениями сотни миллионов лет назад.[ ...]

Основная планетарная функция растений (аутотрофов) заключается в связывании и запасании солнечной энергии, которая затем расходуется на поддержание биохимических процессов в биосфере.[ ...]

Первый трофический уровень - это продуценты, создатели растительной биомассы; растительноядные животные (консументы 1-го порядка) относятся ко второму трофическому уровню; плотоядные животные, живущие за счет растительноядных форм - это консументы 2-го порядка; плотоядные, поедающие других плотоядных - консументы 3-го порядка и т.д.[ ...]

Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Процент усвояемости зависит от состава пищи и наличия пищеварительных ферментов организма. У животных ассимилируется в процессе обмена веществ от 12 до 75% пищи. Неусвоенная часть пищи вновь возвращается во внешнюю среду (в виде экскрементов) и может быть вовлечена в другие цепи питания. Большая часть энергии, полученной в результате расщепления пищевых веществ, расходуется на физиологические процессы в организме, меньшая часть - трансформируется в ткани самого организма, т.е. расходуется на рост, увеличение массы тела, откладывание запасных питательных веществ.[ ...]

Передача энергии в химических реакциях в организме происходит, согласно второму закону термодинамики, с потерей части ее в виде тепла. Особенно велики эти потери при работе мышечных клеток животных, коэффициент полезного действия которых очень низок.[ ...]

Траты на дыхание также во много раз больше энергетических затрат на увеличение массы организма. Конкретные соотношения зависят от стадии развития и физиологиче-ского состояния особей. У молодых особей траты на рост больше, тогда как зрелые особи используют энергию практически исключительно на поддержание обмена веществ и физиологических процессов.[ ...]

Таким образом, большая часть энергии при переходе от одного звена пищевой цепи к другому теряется, т.к. использована другим, следующим звеном может быть только энергия, заключенная в биомассе предыдущего звена. Подсчитано, что эти потери составляют около 90%, т.е. только 10% потребленной энергии аккумулируется в биомассе.[ ...]

В соответствии с этим, запас энергии, накопленный в растительной биомассе, в цепях питания стремительно иссякает. Потерянная энергия может быть восполнена только за счет энергии Солнца. В связи с этим, в биосфере не может быть круговорота энергии, подобного круговороту веществ. Биосфера функционирует только за счет однонаправленного потока энергии, постоянного поступления ее извне в виде солнечного излучения.[ ...]

Трофические цепи, которые начинаются с фотосинтезирующих организмов, называются цепями потребления, а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных - детритными цепями разложения.

С современных позиций биосферу рассматривают как наиболее крупную экосистему планеты. Биосфера, как и любая экосистема, - единый природный комплекс, образованный живыми организмами и средой их обитания, в которой живые и неживые компоненты связаны между собой обменом веществ и энергии. В биосфере протекают процессы окисления органических веществ, а также процессы, направленные к достижению равновесия, которое никогда не достигается, так как новые порции активных соединений благодаря живым организмам все время поступают в систему. Солнечная энергия в виде энергии биохимических связей является энергией геохимиче­ских процессов, преобразующих косные компоненты биосферы.

Любой живой организм биосферы зависит от спектра приземного сол­нечного излучения, температуры, влажности окружающей среды, химического состава воздуха, пищи и других факторов. Жизнедеятельность всех живых организмов, включая челове­ка, представляет собой работу, для осуществления которой требу­ется энергия. Энергия солнечной радиации первична на Земле и имеет преимущественное значение для жизни.

Непрерывный поток солнечной энергии, воспринимаясь мо­лекулами живых клеток, преобразуется в энергию химических свя­зей. Химические вещества последовательно переходят от одних организмов к другим, то есть происходит последовательный упо­рядоченный поток вещества и энергии.

На Земле существует два основных механизма удержания, перераспреде­ления и накопления энергии:

Механизм, характеризующий среду обитания: испарение, конденсация, градиенты плотности в атмосфере и в океане, геохи­мические реакции, эрозия и др. (геохимический круговорот ве­ществ);

Механизм, характеризующий жизнедеятельность биообъек­тов: фотосинтез, дыхание и т.п.

Все типы экосистем регулируются теми же основными закона­ми, которые управляют и неживыми системами, например техни­ческими установками, машинами. Различие заключается лишь в том, что живые системы, используя часть имеющейся внутри них энер­гии, способны самовосстанавливаться, а машины приходится чи­нить, используя при этом внешнюю энергию.

Когда излучение поглощается каким-либо предметом, послед­ний нагревается, то есть энергия излучения переходит в энергию движения молекул, из которых состоит тело, причем, это касается любых физических полей и сред, взаимодействующих с ними. Таким образом, «потребленная» энер­гия на самом деле не расходуется, она только переводится из со­стояния, в котором ее легко превратить в работу, в состояние с ма­лой возможностью использования.

Если температура какого-либо тела выше температуры окру­жающего воздуха, то тело будет отдавать тепло до тех пор, пока его температура не сравняется с температурой окружающей среды, после чего наступает состояние термодинамического равновесия и дальнейшее рассеяние энергии в тепловой форме прекращается. Такая система находится в состоянии максимальной энтропии. Энтропия отражает возможности превращения энергии и рассмат­ривается как мера неупорядоченности системы. Энтропия показыва­ет, что тот или иной процесс может происходить в системе с опре­деленной вероятностью. При этом, если система стремится к рав­новесному состоянию, то энтропия увеличивается и стремится к максимуму.



Применяя положения термодинамики к процессу жизнедея­тельности, можно отметить, что живой организм извлекает энер­гию из пищи, и при этом использует упорядоченность ее химических связей. Часть энергии идет на поддержание жизненных процессов, а часть передается организмам последующих пищевых уровней. В начале этого процесса находится фотосинтез, при котором повышается упорядоченность деградировавших органических и минеральных веществ. При этом энтропия уменьшается за счет поступления энергии от Солнца.

Самоорганизация и эволюция биологических систем на всех уровнях, начиная с клетки и кончая биосферой в целом, происходят вследствие оттока энтропии в окружающую среду. Земля получает энергию от Солнца в виде излучения. Такое же количество энергии отдается вновь, но при более низкой температуре.

Согласно второму началу термодинамики, энергия любой сис­темы стремится к уменьшению, то есть к термодинамическому равновесию, что равнозначно максимальной энтропии. В такое состояние живой организм перейдет, если лишить его возможно­сти извлекать упорядоченность (энергию) из окружающей среды. Закон энтропии универсален и безграничен и гласит, что утратив­шая чувство гармонии любая структура немедленно поглощается живой природой.

Методы термодинамики применимы только к макроскопиче­ским системам, состоящим из большого числа частиц. Система, которая не может обмениваться со средой ни энергией, ни вещест­вом, является изолированной, например камни, шлаки. Если происходит обмен только энергией, то система называется замкнутой (тепло­обменники), а если и энергией, и веществами - открытой (био­объекты). При применении термодинамики к биологическим системам необходимо учитывать особенности организации живых систем:

Биологические системы открыты для потоков вещества и энергии;

Процессы в живых системах в конечном счете имеют необра­тимый характер;

Живые системы далеки от равновесия;

Биологические системы гетерофазны и структурированы.

Рассматривая биосферу под потоком энергии понимают переход энергии по цепям питания от одного трофического уровня к другому, т.е. трофическая цепь – это энергетическая цепь. Все биосистемы открыты для обмена энергией. Все живые системы поддерживают свою жизнедеятельность благодаря:

1 -х, наличию даровой избыточной энергии (извне поступает даровая энергия солнца);

2 -х, благодаря способности эту энергию улавливать и концентрировать (только живые системы способны улавливать и концентрировать энергию);

3 - х, использовав, рассеивать ее в окружающей среде.

Рассмотрим путь поглощения солнечного света фотосинтезирующими организмами с продуцированием органического вещества.

Практически всё первичное органическое вещество на Земле образуется зёлёными растениями в процессе фотосинтеза. Этот процесс идёт с поглощением энергии, которая запасается в химических связях органического вещества. При этом солнечная кинетическая энергия превращается в потенциальную энергию молекул глюкозы.

Любое количество органического вещества эквивалентно количеству энергии. Глюкоза (6CO 2 + 6H 2 0 + 2816 Дж, хлорофилл à C 6 H 12 O 6 + 6O 2 ) - это органическая молекула с высокой потенциальной энергией. Около 2 % солнечной энергии превращается в потенциальную энергию молекул глюкозы. Глюкоза в растениях выполняет 2 функции:

1) - служит строительным материалом тела, т.е. из глюкозы образуются сложные органические молекулы (крахмал, целлюлоза, липиды, белки, нуклеиновые кислоты).

2) - источник энергии для всех процессов жизнедеятельности растений, т.е. построение тканей, поглощение питательных элементов из почвы, дыхание.

Процесс расщепления органических молекул с выделением энергии называетсяклеточным дыханием .

На примере глюкозы процесс расщепления выглядит следующим образом: С 6 Н 12 О 6 + 6О 2 Þ 6СО 2 + 6H 2 О + Q

Т.е. молекула глюкозы в присутствии кислорода разрушается до СО 2 , Н 2 О с выделением энергии. Данный процесс идёт в каждой клетке и в целом противоположен фотосинтезу (травы - тратится 40-50 % запасенной энергии; деревья – тратится 70-80 % энергии, в основном на дыхание). Только часть глюкозы используется растением для своего роста, а другая часть вновь разрушается с выделением энергии, необходимой для протекания физиологических процессов.

Животные получают энергию потребляя пищу, т.е. иточник энергии - потенциальная энергия органических молекул, потребляемых в составе пищи. Животным свойственна активная выработка кинетической энергии (движение, бег, поддержание постоянной температуры тела, дыхание и т.д.). Значительная часть пищи (90 - 99 %) разрушается с высвобождением энергии, которая обеспечивает все функции организма и теряюется, рассеивается, в конце концов, в виде выделяемого телом тепла. Итак, энергия в экосистемах тратится на:

1) метаболизм (большей частью на поддержание метаболических процессов, которые называют тратой на дыхание)

2) образование тканей и органов, запас питательного вещества (т.е. рост биомассы)

3) выделение не усваиваемых веществ (экскрементов)

4) рассеивание в виде тепла при химических реакциях и активной мышечной работе.

Как видим, биосфера, как и все типы экосистем, регулируются теми же основными законами, которые управляют и неживыми системами, а именно:

- законом сохранения энергии : энергия не может исчезать бесследно или возникать из ничего. Но энергия переходит из одной формы в другую;

- первым законом термодинамики : термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии;

Во всех экосистемах и биосфере в целом происходит превращение энергии из одной формы в другую, а именно солнечной энергии в потенциальную энергию, запасаемую растениями, а её - в другие виды по мере прохождения по пищевой цепи;

На каждом трофическом уровне часть потенциальной энергии пищи расходуется на жизненные функции, а часть теряется в виде тепла – рассеивается в окружающую среду. При переходе с одного трофического уровня на другой теряется большая часть энергии (около 90 %).

Поскольку некоторая часть энергии всегда рассеивается в виде недоступной для использования тепловой энергии, эффективность самопроизвольного превращения кинетической энергии (например, света) в потенциальную (например, энергию химических соединений протоплазмы) всегда меньше 100 %.

Энергия может быть использована только один раз , а пищевая цепь - это основной канал переноса энергии в экосистемах. Однако между живыми и неживыми системами имеется существенное различие. Советский ученый Э.С.Бауэр в 1935 г. выделил 3 основные особенности живых систем:

1) способность к самопроизвольному, без воздействия окружающей среды, изменению состояния;

2) противодействие внешним силам, приводящее к изменению первоначального состояния окружающей среды;

3) постоянная работа против уравновешивания с окружающей средой.

Первые 2 особенности встречаются и у других систем, а вот третья является отличительным признаком живых. Поэтому Бауэр назвал ее "всеобщим законом биологии ", который имеет ясный термодинамический смысл: как в неживых системах устойчиво их равновесное состояние, так в живых системах устойчиво их неравновесное состояние.

Если неживую неуравновешенную с окружающей средой систему изолировать, то всякое движение в ней скоро прекратится. В результате трения, теплопроводности, химических реакций и других самопроизвольных процессов потенциалы выровняются, система в целом угаснет и превратится в инертную массу материи, находящуюся в состоянии термодинамического равновесия, то есть максимальной энтропии.

Все, что происходит в природе, ведет к увеличению энтропии в той части мира, где это происходит.

С точки зрения термодинамической статистики энтропия характеризует вероятность возникновения того или иного состояния: маловероятное состояние – это состояние с низкой энтропией, вероятное состояние – состояние с высокой энтропией.

С точки зрения упорядоченности, максимальная энтропия – это максимальный беспорядок, т.е. хаос, а низкая энтропия характеризует упорядоченные системы. Поэтому, с одной стороны, живые системы непрерывно увеличивают свою энтропию, то есть производят положительную энтропию, и приближаются к опасному состоянию максимальной энтропии – энтропии смерти (максимальному беспорядку).С другой стороны, неравновесное состояние живых систем представляет собой чрезвычайно маловероятную структуру ® обладающую очень низкой энтропией. Для того, чтобы поддерживалось неравновесное состояние, биосистемам необходимо освободиться от производимой положительной энтропии и извлечь отрицательную энтропию (негоэнтропию) из окружающей среды (т.е. извлекая из окружающей среды отрицательную энтропию, живые организмы находятся в неравновесном состоянии – состоянии с низкой S, состоянии жизни)

Поскольку чем меньше энтропия, тем больше порядок , тоизвлечение негоэнтропии есть "извлечение порядка", и таким образом повышение собственной упорядоченности системы.

Процесс образования порядка в системе из хаоса называется самоорганизацией . Он ведет к уменьшению энтропии. Для живых организмов способность к самоорганизации – характерная особенность.

Известно, что высшие животные питаются хорошо упорядоченными органическими соединениями. Использовав упорядоченность этих продуктов, животные возвращают в окружающую среду вещества в очень деградировавшей, неупорядоченной форме (т.е. отдают энтропию).

Эти вещества в неупорядоченной форме (с высокой энтропией) усваиваются растениями. Но для растений мощным средством выработки отрицательной энтропии является солнечный свет, с помощью которого в хлорофилле происходит повышение упорядоченности деградировавших веществ - фотосинтез, и цикл повторяется. Это единственный на Земле естественный, самопроизвольный процесс, в котором энтропия уменьшается - за счет затрат даровой солнечной энергии.

Коэффициент перехода кинетической энергии света в потенциальную энергию связи органических соединений много меньше 100 %. Но энергия света достается даром! Поэтому нам все равно, с каким КПД ее будут расходовать растения, пусть он будет даже очень мал. Главное, растения и все "живое" обладают тайнами механизмов концентрирования и диссипирования энергии.

Таким образом, важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом является:

Способность создавать и поддерживать высокую степень внутренней упорядоченности, то есть неуравновешенное состояние с низкой энтропией;

Для поддержания внутренней упорядоченности в системе, находящейся при температуре выше абсолютного нуля, когда существует тепловое движение атомов и молекул, необходима постоянная работа по откачиванию "неупорядоченности";

Эта работа предполагает постоянно действующий источник энергии и наличие хорошо развитых "диссипативных структур" у самой системы. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой концентрированной энергии (например, энергии света, горючего, пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую).

Дыхание высокоупорядоченной биомассы можно рассматривать как диссипативную структуру экосистемы. Это затрата энергии на поддержание жизнедеятельности.

Итак, биосфера и любые экосистемы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне.

В силу второго закона термодинамики этот процесс связан с рассеиванием энергии, с ее потерями, которое все время компенсируется поступлением энергии от Солнца. Таким образом, наша цивилизация - лишь одно из замечательных явлений природы, зависящих от постоянного притока концентрированной энергии светового излучения.

Биосфера - целостная система, выполняющая определенную программу, стабилизирующая себя и окружающую сре­ду и гасящая внешние и внутренние искажающие воздействия. Такая система реагирует на воздействия, вызываемые человеком. До опреде­ленного порога она их гасит, а затем может потерять устойчивость и начать изменяться. Как только человечество на грани ХIХ и ХХ вв. стало использовать большее количество от общей энергетики биосферы - прекратилось действие компенсационного механизма: растительность прекратила давать прирост биомассы, пропорциональный увеличению концентрации СО 2 в атмосфере.

Момент выхода природных систем из стационарного состояния имеет особое значение. Считается, что для природных систем при внесении в них возмущения на уровне 1% (правило одного процента) от общего потока энергии, проходящего через систему, находится порог выхода системы из стационарного состояния. Однако, по мнению Н.Ф. Реймерса, для глобальной энергетической системы (биосферы) этот процесс начинается от привнесения возмущений на уровне 0,1 - 0,2 % от величины общепланетарных процессов. При этом происходят заметные природные аномалии. Так, существенный рост опустынивания отмечен еще в прошлом веке, а влияние деятельности человека на глобальные климатические процессы за последние двести лет окончательно доказано лишь к концу второго тысячелетия.

Человеку необходимо помнить, что при всей мощи научно-технического про­гресса он остается частью биосферы, что, разрушив совре­менную материально-энергетическую структуру биосферы, он разру­шит и самого себя.

Вопросы для самоконтроля

1. Дайте определение биосферы. Какова ее структура?

2. Кто впервые ввел в науку термин «биосфера»?

3. Чем отличается биосфера от других оболочек планеты?

4. В чем отличие живого от неживого?

5. Что такое живое вещество?

6. Назовите функции живого вещества.

7. Каковы важнейшие аспекты учения В. И. Вернадского о биосфере?

8. Что такое ноосфера и почему возникло это понятие?

9. Возможно ли возникновение ноосферы в результате коэволюции человеческого общества и природной среды?

10. Расскажите о гипотезе ноосферы В.И. Вернадского.

11. Что составляет основу биологического круговорота, обеспечивающего жизнь на Земле?

12. Где взаимодействуют большой и малые круговороты веществе?

13. Укажите, при каких процессах происходит поглощение кислорода из атмосферы.

14. За какое время происходит обновление запаса кислорода в атмосфере?

15. За какой период времени претерпевает круговорот весь активный неорганический фонд углерода?

16. Назовите основной источник пополнения запаса кислорода в атмосфере.

17. Перечислите основные этапы круговорота азота. Через какие каналы атмосферный азот попадает в экосистемы?

18. В какой форме могут усваивать азот растения?

19. Где сконцентрированы запасы фосфора?

20. Какие последствия для сельского хозяйства будет иметь исчерпание запасов фосфора?

1. Вернадский В.И. Химическое строение биосферы Земли и ее окружения. - М.: Наука, 2001. 376 с. (Серия "Библиотека трудов академика В.И. Вернадского").

2. Стадницкий Г.В. Экология. Учебник для вузов. - СПб: Химиздат, 2007. – 288 с.: ил.

3. Еремченко О.З. Учение о биосфере. Учебное пособие для вузов - 2 изд. - М: Академия, 2006. – 240 с.

4. Еремченко, О.З. Учение о биосфере. Организованность биосферы и биогеохимические циклы. Учебное пособие - Пермь: Перм. гос. ун-т., - 2010. - 104 с.

5. Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экология: Учеб. для вузов - 3-е изд. - М.: Дрофа, 2004. - 624 с: ил.

6. Павлов А.Н. Экология: рациональное природопользование и безопасность жизнедеятельности: Учеб. пособие - М.: Высшая школа, 2005. - 343 с.: ил.

7. Миркин Б. М., Наумова Л. Г. Краткий курс общей экологии. Часть II: Экология экосистем и биосферы: Учебник.- Уфа: Изд-во БГПУ, 2011. - 180 с.

8. Электронный ресурс – URL: http://ru.wikipedia.org/wiki.


ГЛАВА 5. ПРИРОДНЫЕ РЕСУРСЫ БИОСФЕРЫ И РАЦИОНАЛЬНОЕ ПРИРОДОПОЛЬЗОВАНИЕ

По словам Ю.Одума, “экология, по сути дела, изучает связь между светом и экологическими системами и способы превращения энергии внутри системы”.

Жизнь возникает и развивается в потоке энергии, которая частично аккумулируется в круговоротах веществ. В предыдущем разделе были рассмотрены глобальные круговороты веществ, охватывающие всю биосферу в целом. Кроме того, существуют и малые круговороты, характерные для отдельных экосистем. В любом многоклеточном организме также можно выделить несколько круговоротов, необходимых для жизнедеятельности веществ, аналогичных биогеохимическим циклам биосферы. То есть внутрисистемный круговорот веществ - это и есть способ аккумуляции энергии в системе.

Движение энергии в биосфере существенно отличается от движения вещества. Поток энергии направлен всегда в одну сторону, круговорот энергии невозможен . Живое вещество увеличивает качество части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но ее нельзя использовать вторично.

Принципиальная невозможность утилизации тепловой энергии наряду с прогрессирующим ростом количества энергии, высвобождаемого человеком непосредственно на планете (сжигание топлива, расщепление ядра, ядерный синтез и т.п.) есть один из важнейших факторов глобального экологического кризиса.

1.7.1. Основные закономерности движения энергии

Понятие энергии определяется как способность совершать работу. Впервые наиболее полно понятие энергии было исследовано в термодинамике, что отражено в формулировке двух основополагающих законов, описывающих свойства энергии:

1) первый закон термодинамики (принцип сохранения энергии) - энергия может переходить из одной формы в другую, но она никогда не исчезает и не создается заново;

2) второй закон термодинамики (принцип роста энтропии) - все реальные процессы превращения энергии сопровождаются ростом энтропии, то есть переходом энергии в более рассеянное состояние. Потери энергии в виде недоступного для использования тепла всегда приводят к невозможности 100 %-го перехода одного вида энергии в другой.

Энтропия, или дословно “способность к превращению”, есть величина, определяющая качество и концентрацию энергии S=Q/T.

1.7.2. Физический смысл энтропии

Известно, что во всех естественных процессах теплообмена тепло передается только от тела с большей температурой к телу с меньшей температурой и никогда наоборот (невозможно смешать в одном объеме горячую воду и холодную, а затем разделить в разные объемы получившуюся в результате смешивания теплую воду снова на горячую и холодную).


|dS 1 | < |dS 2 |

Рис. 1.19. Возрастание суммарной энтропии системы в процессе теплопередачи

То есть если от тела 1 с температурой Т 1 и энтропией S 1 =Q 1 /T 1 отводится к телу 2 с температурой Т 2 (Т 1 >Т 2) и энтропией S 2 =Q 2 /T 2 некоторое количество теплоты dQ, достаточно малое, чтобы температуры обоих тел не уменьшились значительно, то энтропия тела 1 изменится (уменьшится) на величину dS 1 =dQ/T 1 (здесь dQ<0, следовательно, dS 1 <0), а энтропия тела 2 изменится (увеличится) на величину dS 2 =dQ/T 2 (здесь dQ>0, следовательно, dS 2 >0), причем так как Т 1 >Т 2 , то по абсолютной величине |dS1| < |dS2|, поэтому общая энтропия двух тел S=S 1 +dS 1 +S 2 +dS 2 =S 1 -|dS 1 |+S 2 +|dS 2 | > S 1 +S 2 , то есть в процессе теплопередачи суммарная энтропия двух тел возрастает и никогда не убывает (рис. 1.19).

Это и есть формулировка второго закона термодинамики. То есть энтропия - это величина, характеризующая направление естественных процессов теплопередачи и вообще любых процессов преобразования энергии .

В более широком смысле под энтропией понимают меру качества, то есть меру концентрации и упорядочения энергии. Так тепловая энергия с большей температурой обладает меньшей энтропией S=Q/T, то есть большим качеством, чем такое же количество тепла при меньшей температуре. Поэтому по мере понижения температуры рабочего тела, например, пара, до температуры окружающей среды можно попутно превратить часть тепловой энергии в механическую работу (тепловая машина).

Чем больше качество энергии, то есть, чем больше превышение температуры пара над температурой окружающей среды, тем большее количество работы можно получить. Разные виды энергии обладают разным качеством.

1.7.3. Процессы преобразования энергии в живых организмах

Вывод энтропии из организма есть непременное условие его существования. Все процессы жизнедеятельности сопровождаются ростом внутренней энтропии организма DSi>0. Чтобы не погибнуть, клетка должна потребить из окружающей среды отрицательную энтропию DSe<0, что равносильно выводу энтропии из организма. Для этого обычно используется энергия химических реакций. Обычно в этих реакциях разрушаются структуры более сложных молекул, например, молекул белка, жиров или углеводов, получаемых с пищей. Затем эти продукты распада удаляются из организма. Себе организм оставляет разницу энтропии продуктов реакции и энтропии исходных компонентов DSe=Sпрод-Sисх<0. Например, глюкоза окисляется в организме, образуя двуокись углерода и воду (экзотермическая реакция). Продукты реакции, двуокись углерода и вода, удаляются из организма. Высвобожденная в процессе окисления энергия обеспечивает протекание всех физиологических процессов, двигательных функций. Эту часть энергии называют тратами на дыхание (метаболизм ). Участвуя в процессах дыхания энергия постепенно полностью переходит в тепло, которое удаляется из организма в окружающую среду. На дыхание тратится не вся свободная энергия, полученная в процессе окисления. Часть энергии используется на организацию эндотермических реакций синтеза необходимых белков, нуклеиновых кислот, т.е. связывается в сложных молекулярных структурах, идет на строительство и “ремонт” организма, то есть на упорядочение внутренней структуры. Эта энергия, накопленная в веществе организма, называется продукцией. Некоторая доля пищи не усваивается организмом, следовательно из нее не высвобождается энергия. Эта энергия выводится из организма вместе с экскрементами и впоследствии высвобождается из них уже другими организмами.

1.7.4. Трофическая структура экосистем

Движение энергии удобно рассматривать на примере какой-то одной экосистемы. Достаточно крупные экосистемы, такие как биогеоценозы, имеют все промежуточные уровни, которые проходит энергия при движении ее от состояния солнечного света до состояния тепла, которое сначала утилизируется в буферных зонах биосферы (атмосфера, гидросфера, литосфера), а затем излучается в космическое пространство (в инфракрасной части электромагнитного спектра). Основная функция экосистем – поддержание круговорота веществ в биосфере – базируется на пищевых взаимоотношениях.

Ввиду наличия в своей структуре сложномолекулярных соединений, живой организм может служить пищей для другого организма. При этом его структура подвергается механическому и химическому разрушению. Можно проследить бесчисленные пути движения вещества в экосистеме, при которых один организм поедается другим и т.д. (трава – корова – человек; злаки – насекомые – лягушка – змея - орел). Ряд таких звеньев называется пищевой или трофической цепью (от греческого слова трофе - питание), в которой происходит перенос энергии через ряд организмов путем поедания одних организмов другими (рис. 1.20). Различные уровни этой цепи, т.е. место организма в трофической цепи в зависимости от способа питания, называют трофическими уровнями . Т.е. пищевая (трофическая) цепь – это взаимоотношения между видами различных трофических уровней. Объединение множества цепей питания, их пересечение составляют трофические сети .

Организмы, стоящие на каждом трофическом уровне, приспособлены природой для потребления определенного вида пищи, в качестве которой выступают организмы предыдущего трофического уровня (или нескольких предыдущих уровней).

Трофические цепи можно разделить на два основных типа: пастбищную цепь и детритную цепь.

1.7.4.1. Пастбищная цепь

На вершине пастбищной цепи стоят зеленые растения. Они не могут высвобождать энергию путем разрушения органики с предыдущего трофического уровня, поэтому единственным источником энергии для синтеза биоорганики для них является солнечный свет.

В качестве строительного материала, то есть исходных компонентов для синтеза, используются простейшие минеральные и органические вещества, рассеянные в почве и в воздухе. К наиболее важным компонентам относится углекислый газ, являющийся продуктом жизнедеятельности всех организмов планеты. Именно здесь происходит возвращение в круговорот биологического углерода. Так как зеленые растения “никого не едят” и все необходимое для их жизни синтезируют сами с использованием энергии солнца, их называют автотрофами (“самопитающимися”).


Рис. 1.20. Трофическая структура экосистемы:

Поток энергии

Поток вещества

Все остальные уровни трофической цепи существуют за счет энергии, накопленной в органическом веществе зеленых растений. Поэтому по отношению к трофической цепи растения называют продуцентами , то есть создающими первичную продукцию. Организмы на всех остальных уровнях трофической цепи называются консументами (потребителями) первого, второго и т.д. порядка в зависимости от занимаемого ими трофического уровня. Первичные консументы питаются непосредственно продуцентами. Вторичные - первичными консументами, и т.д. Например, человек, питающийся овощами, относится к первичным консументам. Человек, который ест говядину – вторичный консумент.

Так как эти организмы не могут сами синтезировать органическое вещество и вынуждены питаться другими организмами, их называют гетеротрофами (питающийся другими).

На втором уровне пастбищной цепи стоят обычно фитофаги, то есть животные, питающиеся растениями, в частности травоядные. Третий и более высокий уровни занимают хищники или зоофаги (питающиеся животными). Иногда эта цепочка может быть достаточно длинной, особенно в водоемах.

1.7.4.2. Детритная цепь

Любая пастбищная цепь переходит в детритную цепь. Термин детрит означает “продукт распада”. В экологии детритом называют органическое вещество, вовлеченное в процесс разложения.

В отличие от пастбищной цепи размеры организмов при движении вдоль пищевой цепи не возрастают, а, наоборот, уменьшаются. Уровень животных-падальщиков можно считать началом детритной цепи, а на следующем уровне могут стоять насекомые-могильщики. Всех консументов, участвующих в процессе разложения детрита, называют детритофагами . Но самыми типичными представителями детритной цепи являются грибы и микроорганизмы. Этих консументов выделяют в особую группу – редуценты (возвращающие). Они питаются мертвым органическим веществом и при этом разлагают его до простейших веществ и биогенов (минеральных компонентов). Затем эти вещества в растворенном виде потребляются корнями зеленых растений в вершине пастбищной цепи, начиная тем самым новый круг движения вещества.

Пастбищная и детритная цепи в разных экосистемах присутствуют по-разному. Например, в лесу лишь небольшая часть зелени поступает в пищу консументам. Большая часть отмерших растений и их фрагментов поступает непосредственно к редуцентам. То есть лес считается экосистемой с преобладанием детритных цепей. В экосистеме гниющего пня пастбищная цепь вообще отсутствует. В то же время, например, в экосистемах поверхности моря практически все продуценты, представленные фитопланктоном, потребляются животными, а их трупы опускаются на дно, то есть уходят из данной экосистемы. В таких экосистемах, как говорят, преобладают пастбищные пищевые цепи, или цепи выедания.

Но любая экосистема с необходимостью включает в себя представителей всех трех принципиальных экологических групп организмов – продуцентов, консументов и редуцентов.

1.7.4.3. Роль консументов в экосистемах

Консументы являются не просто потребителями органического вещества, они выполняют важные функции в экосистеме: возвращают вещество в круговорот, увеличивают скорость движения вещества и энергии и их количество в экосистеме, являются основными звеньями механизмов гомеостаза экосистем, т.е. участвуют в процессах саморегуляции экосистемы, а значит, обеспечивают ее устойчивость.

1.7.5. Правила 1 % и 10 %

С одного трофического уровня на другой передается не вся энергия данного уровня, а только та, которая накапливается в структуре организмов данного уровня. Основная часть энергии, усвоенной консументами с пищей, тратится на их жизнеобеспечение. В сумме с неусвоенной пищей (экскременты) это составляет в среднем порядка 90 % от потребленной энергии.

Следовательно, энергия, накопленная в структурах организмов, а значит, передаваемая на следующий трофический уровень, в среднем составляет около 10 % от энергии, потребленной с пищей. Эта закономерность называется “правилом десяти процентов” (правило Линдемана).

Фотоактивная радиация, используемая при фотосинтезе, составляет порядка 40 % от поступившей солнечной радиации. Из нее растения связывают не более 0,5 - 1% энергии. Только эта энергия, т.е. 1 % от дошедшей до Земли энергии солнца, накапливается в органическом веществе растений, может затем передаваться по пищевым цепям.

Эту закономерность называют “правилом одного процента”: для биосферы в целом доля возможного потребления чистой первичной продукции (на уровне консументов высших порядков) не превышает 1%.

Из правила 1 % следует важный вывод для деятельности человека: увеличение производства энергии до 1 % от солнечной радиации может изменить общепланетарную температуру на 5 - 9 °С с непредсказуемыми последствиями, следовательно, энергия, вырабатываемая человеком не должна превышать 1 % от поступающей на Землю солнечной энергии. В настоящее время объем энергии, вырабатываемой человеком, составляет 1 % от энергии, перерабатываемой в процессе фотосинтеза. Из ограниченности количества поступающей энергии и правила десяти процентов также следует, что все трофические цепи могут иметь ограниченное количество уровней, как правило, не больше 4 - 5. Количество живого вещества на каждом следующем уровне примерно на порядок меньше, чем на предыдущем.

Существует и еще одно следствие, очень важное для человека: с энергетической точки зрения потребление животной продукции, особенно с дальних уровней цепей питания, нецелесообразно. Чем короче цепочка, по которой идет передача энергии, тем меньше потери.

Особенно велики потери энергии при переходе от растений к травоядным животным. Поэтому с точки зрения роста народонаселения планеты энергетически наиболее выгодным является вегетарианство.

При нормальном питании взрослый человек потребляет 80-100 кг мяса в год. При таком рационе уже невозможно обеспечить животной пищей 6 миллиардов людей планеты. При минимальном расходе мяса можно прокормить около 8 миллиардов людей. Переход всех людей на вегетарианство может обеспечить пищей приблизительно 15 миллиардов людей.

1.7.6. Изменение качества и количества энергии

в трофической цепи

При движении вдоль пастбищной пищевой цепи от одного уровня к другому вместе с уменьшением количества живого вещества на каждом уровне увеличивается качество энергии, запасенной в этом веществе.

Для того, чтобы образовать 1 ккал биомассы хищника, требуется около 10000 ккал энергии солнечного света, или 10 ккал биомассы травоядных животных в энергетическом эквиваленте. Соответственно качество энергии, накопленной в биомассе организмов более высокого уровня трофической цепи, т.е. хищников, в 10 раз выше, чем в биомассе организмов предыдущего трофического уровня, т.е. травоядных.

Чтобы получить энергию более высокого качества, требуется пройти цепь превращений энергии. С каждым звеном этой цепи качество энергии будет повышаться, но за счет уменьшения количества энергии, которое удалось сконцентрировать при преобразовании. Например, мы можем получить электроэнергию, сжигая уголь. Но на каждые 500 ккал энергии, выделившейся при сжигании угля, мы сможем получить только 125 ккал электроэнергии. А на формирование 500 ккал угля в свое время было затрачено около 1000000 ккал солнечной энергии. То есть солнечная энергия обладает сравнительно низким качеством. Чтобы солнечный свет выполнял ту же работу, которая производится сейчас углем или нефтью, нужно сконцентрировать ее в 2000 раз. На концентрацию энергии в угле и нефти потребовались миллионы лет. Поэтому непосредственное использование человеком солнечной энергии с небольшими потерями вряд ли возможно.

1.7.7. Особенности энергетических потребностей человека

В настоящее время наиболее мощные управляющие функции в биосфере несет на себе человек. Мы должны стоять в пищевой цепи после всех хищников. Однако мы вовсе не питаемся хищниками (разве что только некоторыми хищными рыбами), а едим мясо в основном растительноядных животных. Кроме того, большую долю в нашем рационе составляет растительная пища. Но тем не менее именно мы наиболее сильно влияем на биосферу.

Особенность человеческой цивилизации в том, что человек постепенно захватывает в природе все большее количество экологических ниш. Мы давно перестали довольствоваться выделенным нам природой местом в трофической системе биосферы.

Мы довольно долго вытесняли хищников, обрекая их почти на поголовное истребление.

Природные редуценты не справляются с антропогенным загрязнением природы, поэтому мы вынуждены осваивать и их трофические уровни. Человек использует огонь для уничтожения мусора, для разрушения отходов используются и более сложные технологии, т.е. в данном случае человечество выступает в роли деструкторов, редуцентов, возвращая вещества в круговорот жизни.

Проводятся активные исследования способов синтеза искусственной пищи, то есть человек претендует и на трофический уровень автотрофов.

Мы ставим себя во все звенья механизмов гомеостаза. Следствием этих процессов является обеднение видового разнообразия жизни на планете.

Если исходить из строения тела, то человек вообще не является хищником. В трофической сети, мы занимаем место растительноядных животных . Почему же наше управляющее воздействие на природу превышает воздействие хищников?

Дело в том, что энергетические потребности человека в большей своей части вынесены за пределы человеческого тела в сферу его производственной деятельности.

Человек так же, как и все другие живые организмы, следует принципу концентрации энергии, который прослеживается в пищевых цепях, но для этого он использует не свой организм, а создаваемые им объекты. Сжигая ископаемое топливо, концентрируя тем самым высвободившуюся тепловую энергию и преобразуя ее в электроэнергию, мы упорядочиваем объекты материального мира, придавая им форму жилых домов, машин, произведений искусства и т.п. Но за все это приходится платить еще большим количеством разрушения в окружающем нас мире, поскольку правило десяти процентов распространяется и на деятельность человека.

Наши потребности не ограничиваются, как у других биологических видов, первичными потребностями – в пище как источнике энергии и вещества для организма, в воздухе и питьевой воде определенного объема и состава и т.д. Наши вторичные (надбиологические) потребности распространяются на месторождения полезных ископаемых, массивы лесов, ландшафты, моря, т.е. практически на всю природную среду планеты. В этом главная особенность энергетических потребностей человека.

ª Вопросы для самопроверки

1. В чем отличие в процессах движения энергии и вещества в экосистемах?

2. Сформулируйте 1-й и 2-й закон термодинамики.

3. Что такое энтропия?

4. Объясните, почему создание упорядоченных структур в живых организмах не противоречит 2-му закону термодинамики.

5. Объясните, почему круговорот энергии в биосфере невозможен.

6. Каким образом используется энергия, поступающая в организм?

7. Дайте определение трофической цепи и трофического уровня.

8. Какие части трофической цепи вы можете выделить?

9. Перечислите элементы трофической цепи и назовите их функции.

10. Опишите элементы пастбищной трофической цепи.

11. Приведите пример пастбищной цепи.

12. Опишите элементы детритной трофической цепи.

13. Приведите пример детритной цепи.

14. В чем отличие качества энергии на разных трофических уровнях?

15. Какая часть энергии солнца идет на образование биомассы продуцентов?

16. Сформулируйте правило 10 %.

17. Как отличается количество биомассы на разных трофических уровнях?

18. Какая часть энергии солнца связывается растениями?

19. Приведите пример экосистемы с преобладанием пастбищной, детритной трофических цепей, с отсутствием пастбищной цепи.

20. В чем особенности энергетических потребностей человека?

21. Почему потребление животной продукции с дальних уровней цепей питания энергетически невыгодно?

22. Какой процент от энергии, перерабатываемой в процессе фотосинтеза, составляет энергия, вырабатываемая человеком?

23. Какова последовательность передачи энергии в экосистеме через элементы трофической цепи?

&? Вопросы для самостоятельного изучения

1. Что делает биосферу похожей на вечный двигатель? Какие изменения в ее работу вносит человек?

2. Почему в живой природе необходимы продуценты, консументы, редуценты?

3. Что такое энтропия экосистемы и как она изменяется в процессе движения энергии по живым организмам экосистемы?

4. Почему “безотходное производство” в принципе невозможно?

5. Какова связь между потоком энергии и потоком элементов питания (вещества) в каждой экосистеме? В чем различие между потоком энергии и потоком вещества?

Живая оболочка планеты непрерывно поглощает не только энергию Солнца, но и идущую из недр Земли; энергия трансформируется и передается от одних организмов к другим и излучается в окружающую среду. Следует четко представлять, куда «текут» энергетические потоки и какова их роль в создании биомассы.

Ежегодно на земную поверхность падает около 2110 23 кДж, из этой величины на участки Земли, покрытые растениями, а также на водоемы с содержащейся в них растительностью приходится только около 40 %. С учетом потери энергии радиации вследствие отражения и других причин, а также энергетического выхода фотосинтеза, не превышающего 2 %, общее количество энергии, запасаемой ежегодно в продуктах фотосинтеза, выразится величиной порядка 2,010 22 кДж. Кроме создания чистой продукции, живой покров суши использует захваченную им энергию Солнца для процесса дыхания: около 30–40 % энергии, расходуемой на создание чистой продукции. Таким образом, растительность суши преобразует суммарно (на дыхание и создание чистой продукции) около 4,210 18 кДж в год солнечной энергии.

Создание и существование биомассы неразрывно связаны с поступлением энергии и веществ из окружающей среды. Большинство веществ земной коры проходит через живые организмы и вовлекается в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (СО 2 и Н 2 О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей (рис. 2).

Рис. 2.Превращения энергии в биосфере (сплошные стрелки – круговорот веществ, прерывистые – поток энергии)

Образованные в процессе фотосинтеза органические вещества служат источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим. Высвобождение заключенной в органических соединениях энергии происходит также в процессе дыхания или брожения. Сапрофиты (гетеротрофные бактерии, грибы, некоторые животные и растения) разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы продуцирования органического вещества. Укажем, что содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. В итоге поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения. Поэтому живому веществу биосферы требуется постоянный приток солнечной энергии. К Земле приходит коротковолновое излучение (свет), а уходит от нее длинноволновое тепловое излучение. При этом баланс этих энергий не соблюдается: планета излучает в Космос несколько меньше энергии, нежели получает от Солнца. Эту разность (доли процента) и усваивает биосфера, постепенно, но постоянно накапливая энергию. Ее оказалось достаточно и для того, чтобы однажды на планете появилась Жизнь, возникла биосфера, и чтобы и ныне поддерживать развитие живого вещества планеты.